Network intrusion detection: Evaluating cluster, discriminant, and logit analysis

نویسنده

  • Vasilios Katos
چکیده

This paper evaluates the statistical methodologies of cluster analysis, discriminant analysis, and Logit analysis used in the examination of intrusion detection data. The research is based on a sample of 1200 random observations for 42 variables of the KDD-99 database, that contains ‘normal’ and ‘bad’ connections. The results indicate that Logit analysis is more effective than cluster or discriminant analysis in intrusion detection. Specifically, according to the Kappa statistic that makes full use of all the information contained in a confusion matrix, Logit analysis (K = 0.629) has been ranked first, with second discriminant analysis (K = 0.583), and third cluster analysis (K = 0.460). 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection in IOT based Networks Using Double Discriminant Analysis

Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...

متن کامل

Multiple Criteria Linear Programming Data Mining Approach: An Application for Bankruptcy Prediction

Data mining is widely used in today’s dynamic business environment as a manager’s decision making tool, however, not many applications have been used in accounting areas where accountants deal with large amounts of operational as well as financial data. The purpose of this research is to propose a multiple criteria linear programming (MCLP) approach to data mining for bankruptcy prediction. A m...

متن کامل

Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining

Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...

متن کامل

A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are availabl...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2007